If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11=4.9t^2
We move all terms to the left:
11-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+11=0
a = -4.9; b = 0; c = +11;
Δ = b2-4ac
Δ = 02-4·(-4.9)·11
Δ = 215.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{215.6}}{2*-4.9}=\frac{0-\sqrt{215.6}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{215.6}}{2*-4.9}=\frac{0+\sqrt{215.6}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| (3x+9)=13 | | 7p÷11=-31 | | -3(v+3)-5(v+8)=-49 | | 4c=20=0 | | 2/3x=4. | | m+4/2=11 | | x/3-75=5/6 | | x+3/5=12/6 | | x+3/5=12^ | | -(5y-4)=6y+2*2-66 | | -36=-6(m+3)-6(6+2m) | | 6^(x+2)=9.6 | | 7x+2)+(x+8)=90 | | y/10+3=-15 | | -116=8(1-4v)+4 | | -7b-6(b-6)=140 | | 5+6q=4q−9 | | 5(4r+4)=-120 | | -10m+(-5)=65 | | -4x-15=3x-15 | | 8v+32=2(v-8) | | -10m+-5=65 | | -117=3(1-5b) | | −28=−7(3x+4)+21x | | 7x-35=-5(x-5) | | -103=10a+7 | | -6m+6=36 | | -14x-15=3x-15 | | 18x-x+5=10x+-10 | | -23=-4x+1 | | e÷11×2=18 | | 2(4b-7)=2 |